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1 Introduction 

Identifying and modelling dependencies is a key skill of the risk practitioner.  

An accurate model of dependency enables us, amongst other things, to model assets 

and price financial instruments more fairly.  Historically measuring and modelling 

dependencies has centred on correlation. However, it is rare for distributions to follow 

the strict spherical assumptions with a constant dependence across the distribution 

implied by correlation.   

The good news is that practitioners can now draw on copula techniques to 

overcome the limitations of correlation.  Copula techniques will be familiar to general 

insurance actuaries, however investment and pensions actuaries are now getting to 

grips with the technique and applying it to their field.   

In this paper we will look at some of the issues in modelling dependencies. 

We will describe some of the measures used to estimate the strength of relationships 

and some of the approaches for modelling. Finally, as an example, we discuss the 

application of copulas to price Collateralised Debt Obligations (CDO’s). 

 

A brief history of dependence 

In 1888, Francis Galton developed the concept of correlation while working 

on heredity.  However there were gaps in Galton’s work, and shortly afterwards a 

group came forward to fill up the gaps in Galton’s work and to extend it in various 

directions. The most prominent member of this group was Karl Pearson who 

developed the familiar form of the correlation coefficient in 1896 [1].  
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An early example of correlation involved an anthropologist investigating 

whether different bones belonged to the same skeleton by calculating the correlation 

between the lengths of various bones for each skeleton divided by the length of the 

skeleton [2]. We will call this type of correlation event correlation.    
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Since then correlation analysis has been used intensively in the social sciences 

to ascertain the relationship between occurrences of economic or social events.  In 

addition, correlation’s role within regression analysis has led to it’s familiarity across 

a wide range of statistical fields.  

The qualitative notion of dependence has a much longer history.  In 1686 data 

maps were being used to infer a physical cause of monsoon rains [3].  Further use of 

spatial models came later in [4] to model the distribution of particles through a liquid. 

Although spatial dependence was observed in agricultural fields, most efforts were 

aimed at removing dependencies prior to any analysis [5].  However, spatial models 

have gained popularity in the last decade and have been used in areas such as ecology, 

geology, climatology and environmental science. In forestry, for example, spatial 

models are used to model patterns of tree growth.  

Temporal correlation, dependence of measurements taken at different points 

from the same process in time, has grown in use since the 1950’s. Although many 

observations have a time dimension, often temporal correlation is ignored, and a 

cross-section of data is analysed.  In the past few years, spatio-temporal models have 

been used to describe dynamic systems such as ecological and climatic phenomena. 

Nowadays, the notion of correlation is central to financial theory. The Capital 

Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT) use correlation 

as a measure of dependence between different financial instruments [6]. Furthermore, 

the importance of correlation has often been emphasised in the context of the pricing 

of derivatives instruments whose pay-offs depend on the joint realisations of several 

prices or rates. Examples of such derivatives products are basket of options, swaptions 

and spread options [7].  The increasing complexity of insurance and reinsurance 

products has led to interest in the modelling of dependent risks, especially with the 

emergence of intricate multi-line products [6]. With the ICA requirements of the FSA, 

robust and defensible approaches to modelling dependencies are required.  In 

Enterprise Risk Management (ERM) the modelling of dependencies between lines of 

business is critical. 

The insurance premium cycle can result in dependent loss ratios from different 

classes of business. Concentration of risks in a given sector, for example the energy 

sector, can result in increased claims such as directors and officers (D&O), errors and 
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omissions (E&O), surety and others. Extreme events, such as hurricanes, can also 

result in dependencies between classes of business which are unrelated in normal 

conditions. Dependencies can be very tricky to model and sometimes counter 

intuitive.  

In ecology complex dependence structures, built up from several factors, are 

common. In the financial world, the dependence structures vary with the volatility of 

the market. The estimation of dependence in non-volatile conditions can be very 

tricky depending on the amount of data available, the quality of the data available and 

complexity of the dependence structure.   

 

2 Spurious correlations 

Pragmatists may impose a form of dependence rather than trying to 

empirically determine and validate a structure.  Whether a dependency structure is 

determined empirically or pragmatically the modeller should be wary of spurious 

structures that may emerge.   

In particular, it is possible to obtain a significant value for a coefficient when 

in reality the two functions are absolutely uncorrelated. An important example is the 

calculation of correlation coefficients of two price indices. Raw prices may show a 

strong correlation, but stripping inflation out may result in two uncorrelated indices. 

Fallacies can also be caused by mixing different records. Suppose that a drug 

is effective only on women and the population tested is predominantly men. In this 

case a spuriously high correlation is obtained only because some women are present 

in the sample [8, 9, 10]. Correlating time series can also produce spurious correlation 

especially due to noise or finiteness of the time series [11]. 
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3 Measures of dependency 

Suppose we have a pair of datasets (X,Y) and we wish to empirically 

determine the dependency between them. There are a number of methods for 

estimating the correlation coefficient and we will look at some of the most common 

ones. The most common approach is the Pearson’s moment approach. This assumes a 

bivariate normal distribution and a linear relationship such as the one illustrated 

below.  
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However, what if our data are drawn from a joint distribution which has a non-

linear relationship? The familiar correlation coefficient might be zero, despite the 

existence of a strong link between the data sets. Consider as an example X ~ 

uniformly on (0,1). The (Pearson) correlation coefficient between the sets X and X3 is 

around 90% - despite the fact that our data are deterministically related! 
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Let us briefly think about the desirable characteristics of a measure of dependence: 

• it should be normalised to take values between -1 and 1. While the exact 

normalisation is arbitrary, this range would agree with our intuition gained 

through familiarity with the traditional correlation coefficient 

• it should be scale invariant 

• it should take the value 0 for data sets which are independent, and one of the 

two extreme values for deterministically related data, whether monotonic or 

not. 

If you are thinking that even meeting this small list is a fairly tall order – you 

would be correct! Several alternative “correlation coefficients” have been proposed. 

Two of the most popular are Kendall’s tau and Spearman’s rho. 

Kendall’s tau is defined as  
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where Q is the number of inversions between the rankings of x and y. An inversion is 

any pair of objects (i,j),(i’,j’) such that ranki-rankj and rank′i-rank′j have opposite 

signs. (Rank is the “order” of the observation in the set, the rank of the largest 

observation is 1, the second largest has rank 2, etc) 

For example, since f(x) = x3, x ε (0,1) is monotone, the difference between all 

pairs of ranks in any random draw from this data set will be zero. Thus no 2 pairs will 

have a different sign, i.e. Q = 0. Hence τ = 1, as desired.  

The Spearman’s rho is defined as  
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where rz denotes the rank of observation z. 
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Again, (X, X3) has ρ = 1. The point about the monotonicity of f(x) = x3 is 

critical here – both Spearman’s rho and Kendall’s tau are measures of monotone 

dependence, in the same way as Pearson’s r is a measure of linear dependence. Data 

which is deterministically related by a non-monotonic function will still fool these 

measures. (X, sin(X)) where X ~ Uniformly on (0,2π) will return τ = 0. 

Both of these measures are statistics, and are subject to sampling error (the 

equalities in the last example will be true as the sample size tends to infinity).  In 

applications to experimental data the standard error of these coefficients can be 

estimated using bootstrapping, see [12]. 

Note that while the former can give values which are very different from the 

Pearson r, the latter can be numerically identical to it, especially if applied blindly 

There are other alternatives for estimating the correlation when non-linearity is 

suspected. In [13] the authors note that for a continuous function, f(x) = y, “close” 

values of x give rise to “close” values of y, and suggest the statistic given by 
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Where I[.] is the indicator function of event . . A large value of K, which can be 

compared to the value calculated for a reference distribution, will indicate strong 

relationship. The Moran’s coefficient [14] replaces the Xs and Ys by their ranks and 

then calculates a moment correlation coefficient using the ranks. The coefficient is 

then compared to a reference distribution. Another rank correlation that is robust to 

outliers is introduced in [15] and in [16] another robust correlation coefficient is 

proposed and is based on the median. 
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4 Copulas 
One method of modelling dependencies which has become very popular 

recently is the copula. The word copula is a Latin noun which means ‘a link, tie or 

bond’, and was first employed in a mathematical or statistical sense by Abe Sklar 

[19].  

Mathematically, a copula is a function which allows us to combine univariate 

distributions to obtain a joint distribution with a particular dependence structure. 

To illustrate how copulas work, we first recall how one uses the CDF of a 

distribution to generate a random sample: to simulate a univariate distribution you 

would start by sampling from a uniform U(0,1)  distribution.  Then by treating this as 

an observation of your variables CDF you can obtain a sample from a PDF.  See 

below: 

 

 

 

 

 

Copulas extend this method to two distributions:   

The 50th percentile on the x 

axis is probabilistically 

linked to a CDF sample on 

the y axis. The copula 

dictates how we go from one 

distribution to another. This 

may not necessarily be in a 

straight-line manner, as is 

the case in a multivariate 

normal distribution. 
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Sklar’s theorem, which is the foundation theorem for copulas, states that for a 

given joint multivariate distribution function and the relevant marginal distributions, 

there exists a copula function that relates them. In a bi-variate setting: 

Sklar’s theorem 

Let Fxy be a joint distribution with margins Fx and Fy. Then there exists a function 

C:[0,1]2->[0,1] such that  

Fxy(x,y)= C(Fx(x), Fy(y))  (4.1.1) 

If X and Y are continuous, then C is unique; otherwise, C is uniquely determined 

on the (range of X) x (range of Y).  

Conversely if C is a copula and Fx and Fy are distribution functions, then the 

function Fxy defined by 4.1.1 is a joint distribution with margins Fx and Fy.  

 For a proof we direct the reader to [22], the standard introductory text on the subject. 

So far we have been rather vague about the function C. Clearly C must be a rather 

particular type of function.  

Definition 

C is a Copula if C:[0,1]2->[0,1] and 

(i) C(0,u) = C(v,0) = 0 

(ii) C(1,u) = C(u,1) = u 

(iii) C(u2,v2) - C(u1,v2) - C(u2,v2) + C(u1,v1) ≥ 0 for all v1 ≤ v2, u1 ≤ u2. 

The shape of the Frank 

copula of the left illustrates 

that these definitions hold, 

essentially that it is 

increasing monotonically on 

u and v. 
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If C is differentiable once in its first argument and once in its second, (iii) is 

equivalent to ∫ ∫ ≥
∂∂

∂2

1

2

1

2

0
v

v

u

u

dudv
vu

C for all v1 ≤ v2, u1 ≤ u2 in the range. From this 

observation we see that the definition simply states that a copula is itself a distribution 

function, defined on [0,1]2, with uniform marginals. Each of the marginal 

distributions produces a probability of the one dimensional events. The copula 

function then takes these probabilities and maps them to a joint probability, enforcing 

a certain relationship on the probabilities. 

Using a copula to build multivariate distributions is a flexible and powerful 

technique, because it separates choice of dependence from choice of marginals, on 

which no restrictions are placed [20].  

Sklar’s theorem provides one of the primary ways of constructing copulae. In 

this case, if X and Y are the marginals, then ( ))(),(),( 11 vFuFFvuC YXxy
−−= . Other 

methods use geometric arguments and the definition above to find appropriate 

functions. 
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Choosing a copula 
 A wide, one might say bewildering range of copulas exists. This prompts the 

question: how does a practitioner choose which one to use? Frequently the choice is 

based on the usual criteria of familiarity, ease of use and analytical tractability.  

The most commonly used copulae are the Gumbel copula for extreme 

distributions, the Gaussian copula for linear correlation, and the Archimedean copula 

and the t-copula for dependence in the tail [21, 22] 

The Gaussian copula is derived from the multivariate Gaussian or Normal 

distribution.  Other methods of construction may use geometry and the definition 

above to construct copula functions, such as the Frank copula.  

For example, if we have two marginal distributions - one with a beta 

distribution with parameters α and β, and the other with a lognormal distribution with 

parameters μ and σ, then we can use a copula, say a member of the Frank’s family 

given by  









1)−

1)−1)(+
+= −

−

δ

δδ

δ e
e v

(
(e1lnv)C(u,

u-
1-  

and by substituting the relevant distribution functions, (ie applying 4.1.1) we generate 

a new joint distribution.  

The parameter δ determines the level of dependence of between the marginals.  
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Contour maps of a Frank Copula function 
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The t copula 

The t copula is based on the multivariate t distribution, in the same way as the 

Gaussian copula is derived from the multivariate normal. This is a straightforward 

copula to simulate from: first generate samples from the multivariate t distribution 

(well known algorithms exist to do this), and then invert to cumulative distribution 

samples.  

The t copula is fast growing in usage because the degree of tail dependency 

can be set by changing the degrees of freedom parameter ‘v’ [24,25].  Large values 

for v, say v = 100, approximates a Gaussian distribution.  Conversely small values for 

v, say v==3, increases the tail dependency, until for v = 1 you simulate a Cauchy 

distribution .   

Sampled contour maps of a T copula function 
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To illustrate the application of the t copula consider the monthly movements 

on two equity indices, FTSE All World and FTSE All World Specialist Finance as 

shown below.  In this example the historic downward movements in the indices are 

more dependent than the upward movements, which fan out.  

 

The historic monthly returns are represented as circles on the plot, and the 

univariate distributions are shown on the x and y axis.  From this chart you can see 

how the term ‘marginal distribution’ came about, the univariate distributions lie on 

the ‘margin’. 

We can model the joint distribution with a t copula and subjectively asses a 

degree of freedom that is representative of the tail dependency.  The charts below 

show the t distribution with different values for v and 500 simulations. 

 

 
High tail dependency V=3   Lower tail dependency v =500 

On these charts we have added some red windows to highlight the downside 

tails.  Clearly the t distribution on the left captures the falls better, within the red box 

on the left there is higher correlation than the one on the right. 

Marginal distributions 
 

Historic Joint distribution between AW Tech AW Specialist 
Finance 

Joint distribution 
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Care needs to be taken when applying the t distribution, as too low a value for the 

degree-of-freedom parameter v can generate ‘wings’.  In our example this can be 

clearly seen when v=1.  This may not be a desirable feature. 

T Copula, v=1. 

 

 

A difficulty with the use of multivariate copulas such as the t copula is that there is 

only one parameter to control tail association and different pairs of variates might 

have different tail association [26].   However conditioning offers a route to join 

different copulas designs together. 

A possible drawback of the t-copula is that it has symmetric tail dependency. 

However more recent work shows that it can be generalised to give asymmetric 

dependence [23]. 
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Marginal Distributions 

Although a great deal of the literature considers the dependency structure between 

variables, the practitioner will still have to build the marginal distributions. Different 

approaches can be taken, such as empirical distributions or parametric best fit.  

Using empirical distributions results in a cumulative histogram of steps, The discrete 

nature of the steps is often not desirable. As a result many practitioners start with an 

empirical distribution and apply a cubic spline or kernel smoothing technique to 

interpolate between the steps, as can be seen below.  

 

 

 

 

 

 

 

Consideration also needs to be given to the tails. The tails could be an abrupt 

minimum or maximum, or they can be fitted using  Extreme Value Theory (EVT) 

related techniques; such as a Gumbel distribution [27]. Fitting an EVT tail would be 

appropriate for equity returns, but would not be appropriate for unemployment, which 

has a minimum value of 0% and a maximum of 100%. 

In addition the modeller can improve the flexibility of a copula through the smart use 

of pre-processing, for example [24,25] suggest applying a GARCH filter to give i.i.d. 

observations.  The authors found that a simple normalisation of the form (x-

mean)/stdev offers an improvement in the dependency estimation and modelling of 

tails.  Indeed pre-processing would remove the need for complicated copulas designs 

such as the EV t copula described in [23]. 

.   
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Conditioning copulas 

From the perspective of the practitioner the ability to condition copulas seems 

to be a very powerful tool.  Fitting the copula to all the data is equivalent to fitting a 

non-linear regression. Forcing certain variables to take a particular value allows the 

modeller to generate an expected distribution given a variable value Y. This offers 

benefits over traditional Markov chains.   

The authors have found that conditioning allows different copula forms to be 

bolted together in one model, i.e. different tail dependencies.  As the scope of this 

subject is beyond this paper we have decided to address this subject in more detail 

separately. 
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6 Case Study: Pricing CDO’s 
 

The market for credit derivatives and structured products based on those instruments 

has been growing in recent years. In this section we discuss how copula based models 

are used to price Collateralised Debt Obligations, or CDO’s. We believe this will be 

of interest to many actuaries given that many life and pension funds are investing in 

these products. 

In this case study we are describing what we believe to be an emerging industry 

standard. However, the methods described below have many theoretical 

shortcomings, and the standard will no doubt change in this fast developing field [26]. 

 

What is a CDO? 

CDO’s are a wrapper around a basket of corporate debt instruments, for example 

high-yield bonds. The CDO is divided into “tranches”, or levels of seniority, each 

with a promised coupon. Payments from the underlying instruments are passed on, via 

a Special Purpose Vehicle (SPV), to the purchasers of the tranches, starting with the 

most senior level, and proceeding down. If defaults occur in the underlying assets, the 

senior levels are (at first) unaffected, with the lower levels losing some or all of their 

investment. More defaults will mean more layers are “burnt through”, but the senior 

level’s principle and interest payments will continue unless almost all the underlying 

instruments have defaulted – generally considered to be an unlikely scenario.  
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This is illustrated in figure 6.1. 

 

Figure 6.1 A schematic view of a CDO transaction 

So a CDO is a method of taking a large number of high risk investments, and creating 

a several artificial structures (the tranches) with varying levels of risk. 

A credit default swap (CDS) is an insurance contract on a corporate debt: one party 

pays a regular premium, while the other party agrees to pay an amount if a credit 

event occurs – such as the default of a company on its debt. The premium is set such 

that the (risk-neutral or market implied) expected value of payment on default is equal 

to the value of the premium payments.  

Let s be the premium rate paid, and R be the “recovery value” (the amount which 

bond holders will receive on their investment following a default). Then we can write 

the equation of value (in continuous time) as follows: 

u

t
ru

t

u
ru dPeRduPse ∫∫ −− −=

00

)1(  

where Pu is the probability of survival to time s. This equation is more familiar to 

actuaries in the form: 

)1(1
:: RAas nxnx −= ϖϖ  

Which is the equation of value for a regular premium term assurance. However, for 

the CDS we are interested in the life time of a bond, rather than the lifetime of a 

Underlying  
Assets 
(bonds/ 
CDS’s, etc) 

SPV Senior tranche: 
AAA  3% coupon 

Mezanine tranche: 
BBB   7% coupon 

Equity tranche: 
BB   12% coupon 

payments payments 
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policyholder. In order to price the CDS (ie to find the value of s which solves the 

above equations) we need to derive or observe the default probability function Pu.  In 

addition this equation can be used in the opposite direction – we use s for different 

terms to find Pu 

The pricing problem 

Pricing a CDO, comes down to calculating the (joint) probabilities of default of the 

underlying instruments. The problem is that we are attempting to price a basket of 

credit instruments which may have dependent risks of default. 

Additionally, the individual risks of default are traded directly in the corporate bond 

and credit derivatives market.  So we need our CDO tranche prices to be consistent 

with the individual bond prices and CDS rates if we are to avoid arbitrage 

opportunities. 

Note that, as in all pricing problems, it is not the real-world probabilities that are 

needed, but the risk-neutral probabilities [28]. 

 

A Copula based solution. 

If we think of the prices of individual bonds and CDS’s as reflecting the marginal 

risks of default, and the price of a CDO tranche as reflecting the joint risk of defaults, 

we see immediately that a solution involving copulas is indicated. 

Given that the marginal prices (and hence probabilities of default) are observable, we 

could assume a copula and then either: by observing the price of the CDO, infer the 

relevant correlation structure, or, by estimating the correlation structure exogenously, 

calculate the fair price of the CDO. 

The copulas most used by market practitioners are the standard Gaussian, the one-

factor Gaussian, and sometimes the Clayton copula. We describe in more detail how 

and why they are used below. 
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Standard Gaussian copula method 

The Gaussian copula is used to generate Monte Carlo simulations of the defaults of 

the underlying instruments, which are then used to price the CDO [29]. The 

correlation structure used is the pair-wise asset correlation as used, for example, in 

CreditMetrics. Often equity correlation, as derived from historical time series, is used 

as a proxy for asset correlation.  

The observed marginal default distributions, together with the correlations and the 

Gaussian copula, define the joint default distribution. Pricing can then be done by 

simulating from the joint distribution, and assessing the payouts in each simulation, as 

in normal Monte Carlo pricing methods. 

We summarise by figure 6.2: 

 

Figure 6.2 Pricing a CDO using a Gaussian Copula 

This method is useful since it can be used to price CDO’s accurately, given the 

appropriate marginal distributions and the asset correlation parameters. The 

disadvantages are that it requires a large number of inputs (the correlation parameters 

– CDO’s can contain hundreds of names) and the computation time required for the 

Monte Carlo simulation can be onerous. Finally, given a market price for the CDO 

tranche, we are unable to “invert” this price to find the implied correlation parameters. 

Correlations (Historic 
estimate) 

Marginal default 
probabilities (Bond/ 
CDS prices) 

Copula CDO 
Price 

Simulations 

Inputs 
Assumption Output 
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One Factor Gaussian and Clayton 

Credit risk can also be calculated using a one-factor model [30]. These models 

postulate that defaults are dependent through a single random factor, often identified 

with the state of the economy, or some other macro-economic variable. Conditional 

on the value of that variable, defaults are held to be independent. So during a 

recession we have more defaults than during a boom, but if we know we are in a 

recession, company A and company B will default independently (but both with a 

higher probability than in a boom). 

This model further assumes that the underlying portfolio consists of a large number of 

homogenous risks. 

Default occurs in this model for name i if Xi < ci where Xi is a random variable and ci 

is some threshold for the ith asset.  This is a simple proxy to the structural models of 

Merton [31]. 

We then assume that  

   iiii eZX ⋅−+⋅= 21 ρρ  

Where Z is our driving factor and the ei are mutually independent and independent of 

Z. Clearly conditional on Z, the X are independent, and the relationship between the 

Xi’s is multivariate normal, with a common correlation ρ. 

Because the defaults are conditionally assumed to be independent, the conditional 

joint density function factorises. The unconditional joint density function can then be 

found by performing a one-dimensional integration over the possible values of the 

factor. This integration must usually be done numerically, but the computation time 

and effort is far smaller than for the Monte Carlo method above. 

In this model the marginal default probabilities are correlated with the factor variable 

by a common amount. Since we no have a single correlation factor, we can invert 

market (observed) prices for CDO tranches, and solve for the “implied correlation”. 
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Figure 6.3 Using a one factor model to derive a market implied correlation. 

 

 This “inversion” has become market practise, with some talk of implied correlation 

becoming the credit market equivalent of implied volatility. Indeed, this correlation 

varies by tranche of a particular CDO, where the model tells us it should be constant, 

in a way some see as being analogous to the implied volatility smile. Others merely 

think that this shows that better models are needed. 

The Clayton copula is used in a similar way, but is technically more convenient for 

calculations. 

The copulae used as standard in the pricing of CDO’s are used primarily for 

convenience and tractability, rather than for any underlying theoretical reason. 

Interestingly, in our research for this section, we noticed that much of credit risk 

valuation involves the analysis of survival probabilities – an area which should be a 

speciality for actuaries. Further, the structure of a CDO is similar in many ways to a 

reinsurance contract, where the underlying risks may be correlated. The pricing of 

reinsurance contracts is beyond the author’s field of knowledge, but we are sure that 

the profession has something to contribute to this field. 

 

 

 

Joint default 
probability (CDO 
price) 

Marginal default 
probabilities 
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Copula Implied 
Correlation 

Inversion 
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7 Summary and conclusions 
 
When we set out to produce this paper together we expected copulas to be a very new 
and novel concept.  However our first surprise was that copulas have been in practice 
since the 1970’s.  However they have only recently broken into the mainstream, this 
seems a long slow journey for such a useful technique to progress.  Einstein didn’t 
have to wait that long for the bomb. 

Our second surprise was the sheer number of applications for these tools, and their 
potential to revolutionise regression, garch and artificial intelligence applications.  A 
copula develops an internal representation of associations between many variables at 
the same time.  Conceivably more work on discontinuous copulas, spatial copulas, 
and feedback could lead to artificial thought that will surpass previous modelling 
using neural networks.  The copula captures the internal workings of thought rather 
than the physical connections of thought that you see in a neural network. 

Some of the material on copulas can be both mystifying and intimidating.  However 
we hope that the reader is left with a better understanding of the principles of copulas. 

Perhaps one day actuaries will be replaced by thinking computers powered by copula 
engines, but who will own them?
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